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PREFACE

This report is & summary and exposltion of research efforts by the
Commnication Theory Group at Northeastern University during the period
from December 1, 1963 to March 31, 1967, mainly under the Contract No.
AF19(628)-3312. From September 1, 1965 to March 31, 1967, partial
support has been received from NASA under the Grant No. NGR-22-011-013.

Over half of the studies have been presented as scientific reports,
while the rest involves work which is still being pursued and extended.
The former studles are sumarized in part two and the latter are discussed
in more deteiled manner in part one. A list of publications is also
attached.

The bulk of the research work lles in the area of coding and signal
design for commnication, for data transmission and for digitalized guldance
control. A small part is devoted to assdclated problems such as optimum
interpolation of sampled functions and optimum equalization of random
channels.

Much of the work described in this Final Report is not considered
closed. Research in these and related fields is being continued under

Contract No. F19628-67-C-0112, which became effective on April 1, 1967.



ABSTRACT

This report describes four current research efforts: arithmetic codes,
non-binary orthogonal codes, error-correcting schemes, and filtering of
PAM signals for a randomly selected channel.

Seven Scientific Reports are summarized. The subject matter of these
reports includes the following topics: linear product codes, detection of
digital data, optimum interpolation of sampled functions, adaptive band-

width compression, and the design and shaping of analog signals.
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PART I REPORT ON RECENT STUDIES

CHAPTER I
ARITHMETIC CODES

Ne T. Tsao-Wu and S. H. Chang

Introduction

Arithmetic codes, also denoted as AN codes and linear residue codes,
are based on ordinary arithmetic operations. They are useful both in
controlling computation errors in digital computer and in data transmission.
They are practical in that encoding and decoding operations can be performed
using general purpose computers. This class of codes was first investigated
by Diamondl and Brc:wn.2 Thelr studies were followed by Peterson3 ) Henderscml“ )
Berstein and Kim?, Chien®, Stein? and Mandelbaum.® Most of the results have
been in the area of correcting a.nd/or detecting burst errors. Recently, a
class of linear residue codes that corrects random errors has been discovered
independently by Mandelbaum®, Barrows?, and this groupe.

In this chapter, after briefly stating some useful concepts in elementary
Number Theory, we shall discuss a class of binary cyclic*'* arithmetic codes.
An expression for the minimm distance of such codes is established and the
result is extended to texrnary codes. We then present attempts to calculate

the minimm distances of & much more general class of arithmetic codes which

*Mandelbaum's paper and a discussion by Chang and Tsao-Wu are to appear
in the IEEE Transactions on Information Theory.

**The non-zero code words form a cyclic multiplicative group.



correct multiple errors. Finally, bounds on the minimum redundancy for the
burst-error-correcting arithmetic (Fire) code proposed by Mandelbaum are

found.

Definition

Arithmetic codes are, in general, of the form AN + B, where N is the
number to be coded and A and B are positive integers. It is a mapping
of a set of integers 0,1,2,¢¢s,n4,..« into the set of integers
B, A+B, 2A+B,sss,An{+B,ess o« Each of these integers, when represented in
radix r number system, is a code word. In particular, when B = 0, for

numbers nj, No,se., We have
Anl+An2+... =A(n1_+n2+ ooo),

if (n, + n, + eee) is 8lso a number in the set under consideration. This
implies that the sum of the coded numbers is the coded number of the sum
and, in this sense, it is a linear code.

To recover the coded number, we first take the residue of the received
number modulo A. It it is a non-zero residue, an error has occurred; if
it is zero, there has been no error, or an undetectable error has occurred.
This justifies the name, linear residue code.

The arithmetic weight W(A) of any number A is the least number of non-

Zero terms necessary to express A in the form

A -ch 2d, cj =0, L.




The arithmetic distance, D(Al, Ag), between any two numbers, Ay and Ay, is
defined to be the arithmetic welght of the magnitude of their difference; ‘

that is,

D(A1, Ap) = W(lAy - apl).

Hereafter, the term weight or distance will mean arithmetic weight or

arithmetic distance respectively, unless otherwise stated.

Some Baslc Concepts from Number Theorylo’ll

(1) Principal Division Identity for the Integers

If a and b are integers, b # O, then there are
unique integers s and t such that a = sb + t and
0<t <h.

(11) Representation of a Mumber in Radix r

Iet r be a positive integer greater than l. Then
each positive integer A can be expressed uniquely

in the form
A= Cnrn + Cn_lrn_l + eoe + Clr + co,
where 0 s ¢y < r-1 (1 = 0,1,.s0,n~1) and

0 < Cn < r"'ll

(111) Canonical Decomposition of a Number into a Product of Primes

Every integer A(> 1) can be expressed as a product of
primes and uniquely, if one disregards the ordering of
primes, as

Q Q;
A=Pl‘lp202ooopkka }



in which Py, Po,ee.,p) are different primes and
Q1; Qp,yeee ;0 are positive non-zero integers.

(iv) The Euler Function

The Euler function @(A) is defined for all positive
Integers A and represents the number of numbers of
the sequence C,l;¢..,A=1 which are relatively prime
to A. In terms of the canonical decomposition of

the number A, it can be shown that
1 1 1 o 1
A A l-—=—}1-= see le-==)= A l - =
gla) = A - g1 - 55 s G- =all G- 50

and in perticular

g(p%) = p% - p%L,  @(p) = p-l.

(v) Congruence Relations

If a and b are integers, then a = b(mod m) means that
(a=b) is divisible by m or that a is congruent to
modulo me In other words, there is an integer k such
that a=b = km.
(a) Congruence classes (mod m) are members of
a set ¢y, Cp,yees,C 1 such that for each
R=0,1,ee.,m=1, where R is called a residue,
cRr consists of all the integers km + R,
k=0, £1, £2,,.. »
(b) The set of these congruent classes (mod m)
is a ring with respect to addition and
multiplication. This ring is a fileld if

and only if m is a prime.




o (c)

(a)

One can form a reduced system of residues,
(mod m) by taeking one residue from each
class which contains numbers that are
relatively prime to m; there are $(m) in
number.

If a and m are relative prime, and x runs
through a reduced system of residues modulo
m, then ax also runs through a reduced

system of residues modulo m.

(vi) The Theorems of Euler and Fermat

(a)

(v)

Form > 1, a and m are relatively prime,
we have
a¢(m) = 1(mod m).
This is the Buler's theorem.
If p is a prime, and a is not divisible

by p, we have

aP~l = 1(mod p)

or
aP = a(mod p)

for all integers a. This is the Fermat's

theorem.

(vii) The Multiplicative Group G(A)

The set of all integers smaller than and relatively

prime to a given integer A forms a commutative

group G(A) with respect to multiplication modulo A



and, by (iv), there are @$(A) in number. ILet
s € G(A), and e be the smallest integer such

that

s€ = 1(mod A),

then e 1s called the exponent of s mod A and
is denoted by e(s,A). It can be shown that,

using notation in (iii)
e(s,A) = ICM [e(s,plai), e(s,p2aé),...,e(s,pkak)] .

In particular, if A is of the form p® (i.e., &

power of a prime), then there exists elements g
in G(A) such that e(g,p™) = ¢(p™), and they are
called primitive elements. In addition, G(A) is
a cyclic group in which g is called a generator,
i.e., all the elements of G may be expressed as

distinct powers of g.

The Binary Cyclic Arithmetic Code

Consider the AN code in which A is chosen such that

B-1
L 2B
B

A

2

where Eris a prime with 2 as a primitive root. The binary expression for
A (or Ael) can then be obtained from the periodically recurring sequence
in the fractional expansion of B since
l . .
-ﬁ = O.a.la?...&B_l
B-1 , 1 _.1_
A=2 L] B B—alaeoooaB_l .

®This B is distinct from the B of page 2.

-6-




This sequence is called the quotient-sequence.

Lemma 1
Fach element of the quotient-sequence can be expressed
in the form, a; = (21 mod B) mod 2.

Proof
From the decimal expansion of B, using 2 as radix, one

gets, for i < B-1,

i

2 2l moa B
—é_ = ala.aoo.a-ioai+la¢i+2oooaB_lalazaoc = q + ———-F——- ’

2l mod B :
where ¢ and — are the Integer and the decdimal part of

the ratio. The integer part is

i i
2 2= mod B
qg-B—-..—_B—__-galae...ai

or
2l - 21 mod B = (aj8pes.ay) B.

Now, noting that B is an odd number, and taking congruences

modulo 2 on both sides, we have
(21 mod B) mod 2 = 8y

There are B-l1 non-zero code words expressing in binary digits the
numbers AN, for N = 1,2,¢¢4,B=1. All code words are B-l digits long and
are cyclic shifts of each other. That i1s, they are all of the form
A« (21 mod B). The all-zero code word is also added to the code giving

a total of B code words.



Property of the Quotient=Sequence

(1)

(11)

Theorem

The first half of the sequence is the complement of the

second halfy digit by digit.

B=1
aCe -+ =l Sis-———-
i.e., a4 ai . B-1 , 1 A
2
B-1
or (g 2 . %) A = 0 mod (gB'l - %) . (1)
Indeed if

B-1
B divides (2B~! - 1) and B does not divide <? 2 . %),

then B-1
B must divide (2 2 + %) s

i'e., B_l

B=1
22 4+ l> <—2——§'—l> =m (2]3'1 - l) , m an integer,

hence (1) is proved.
There are equal number of ones and zeros. This follows from

(1), since (B-1) is even.

2

oB-1_y

For a cyclic AN code, where A = , B is a prime greater

than 3, the distance is given by

[22].°

*[x] denotes the integer part of x.

-8-




Proof

Any prime B > 3 is congruent to either 1 or 2(= -1) modulo 3,

icec ’
B-1 .
either X = —5—-, an even integer
or X = ggi , an even integer.

We shall consider the first case only. The second case can
be proved in a similar manner. ILet N; = (21) mod B. Without
loss of generality we list A+l and A¢3 in the ordering of Ni
rather than in the familiar ordering of i in Table I. We
shall first show that, in general, the digits of A+3 differ

from those of A-l only within the central interval.

TABLE I

Intervals of Ny I II IIT

Ny = (21) moa B|(L 2 .00 x-1 x) | ( x#1 x#2 ov. 2x-1 2x) | (2x+1 2x42 ... B-2 B-1)
Al (L 0.0 1 o) |(1 0 0l o)} (1 0 eee 1 0)
A3 ( Same Y1(o 1 ... 0 1) | ( Same )

A+3-A.1 = A.2 |(O 0) 1(-1 41 ...-1 + ) | (0 0)

In the interval I, the digits of the sequence in A+3 remain
the seme as those in A+l because both 3+[(21) mod B] and

(21) mod B are less than B. Therefore, in this interval

[(21) mod B} mod 2 = [(3°21) mod B] mod 2.




This congruence is again satisfied in the interval III, where
2B <3+ {(21) moa B] < 3B.

However, in the interval II,
B<3 .« {(21) mod B] < 2B,

the above congruence relation is no longer satisfied. It
follows that the non-zero digits of A*2 occur over the interval
II with a total number of x digits. For this number to be the
minimum weight of A2, it is sufficient to show that these
digits are not pairwise adjacent in the ordering of i. In
other words, it is sufficient to show that the following
adjacency condition for any two numbers within this interval

N, and N, cannot be satisfied.

1 1
(27 moa B) - (27 mod B)

N, - Ny

a-l-l

i i
= (2 mod B) - (272 mod B)

i
1-2°®% mod B = Ng ,
where we take Ny > Ny and ib > ia without loss ¢of generality.
This is evident from the fact that
Ny, - Na < x-1
while

x+l < Ny < 2x.

Thus the minimum weight of A2 is x = §§l . Other code words

are cyclic shifts of A-2 (in minimum weight representation)

-10-




and have the same minimum weight.* The minimim distance of

the code, is therefore, given by

i
l—l

or X for the second case.

wlE v
fun

Combining, we have

The code is capable of either (i) detecting x~1 random arithmetic errors

or (ii) correcting Eég and detecting E%@ + 1 random arithmetic errors.

Extension to the Termary Cyclic Code

B-1
The ternary cyclic AN code is obtained by selecting A = "% , where

B is a prime, with 3 as a primitive root. The minimum distance in this case

is found to be 2 - [Ei;] +« The proof is similar to the argument used for

the binary case. Therefore, only the additional steps required in the proof
will be stated in detail. We require some preliminary remarks to establish

a result needed in proving the expression for the minimum distance, namely,

those primes, having 3 as a primitive root, B = Ux-1 satisfy B = 1 mod 3

and those of the form B = lx+l must satisfy B = 2 mod 3.

*Note that half of the code words are represented by their negative
complements in this mapping, i.e., A-N—> A « {-(B-N)}.

-11-



Lemma 3

Proof

3 is a quadratic residue of B, if and only if

i
i

either B=lmod3 and B = 1lmod b

1]

or B=2mod 3 and B

i

3 mod L.

An equivalent statement is that 3 is a quadratic residue of
B if and only if the prime B is in the form of 121 1,1

being any real integer.

We make use of the definition of Legendre symbol and the

quadratic Reciprocity Lew in Number Theory. If B= 121 * 1,

<%> ) @ (c1)BY2 <%+_1 (-1)1242 @) L

If B = 121-1,

@ _ (__31_ (_l)(l21—2)/2 ) (_l)(l21-2)/2 (_l)(121-2)/2 oL

By definition of the Legendre symbol, 3 1s a quadratic residue
of B.
To show the converse, if 3 is a quadratic residue of B, one

can show by exhausting all possible forms of B that only

Q-

whilst B= 5 mod 12 and B = 7 mod 12 4o not.

Bw= 121 £ 1 satisfies

-12-




Lemms L4

If any prime B is of the form 12i * 1, i being any real
positive integer, then 3 cannot be its primitive root.

This follows immediately from the above lemma.

Lemma 5

Each element in the quotient~-sequence can be represented

in the form of c(31 mod B) mod 3, where ¢ = 2 when B is

in the form 4x~-l and ¢ = 1 when B is in the form 4x+l.
Proof

From the division algorithm, the ith remainger of % is

given by Ny = 3:L mod B, or as a recursive relation

Ny =Nj3 © 3-248
following in the same manner as in Iemma 1. It can be
shown that
ay = 2(31 mod B) mod 3 for B = kx-1

or af = (31 mod B) mod 3 for B = Lx+l.
Theorem 6

The distance of the termary cyclic code, where A = 33-;'—'1- s

1s2°B;;listle+l, and is 2 -EE_]:ifB:hx-l.
Proof

We shall prove this theorem for the case B = Ux+l. It follows
that B= 2 mod 3, x = 1 mod 3 and a; = (3! mod B) mod 3. We
follow the general scheme as in Theorem 1 by listing Ael and

A+l in the ordering of Ny, Ny = 3! mod B, as shown in Table 2.



TABLIE II

(l 2 3 XX X) (x+l X+2 oee QX) (2x+l 2X4+2 oo 3X) (3x+l 3x+2 XX "l'X)

(L 2 0eea )Il(2 0 1.e02)j(0 1 2..e0)|(1 2 0 ese 1)

( NoChange ) [|(0 1 2..0)[(2 o 1 eee 2 )|( No Change )

i

0 eee )12 1 1...2)(2 I eee 2 ) (0 O vee 0 )

By the same reasoning as in Theorem 2, we note that there are
2x non-zero terms for A+3 belonging to the interval

L = {x+l,¢0.,2x} and M = {2x+1,...,3x} and show that any
number L,j in L and any number My in M cannot be adjacent in
the ordering of i. Within the interval L, we only need to
prove that the numbers with coefficients %2 are not adjacent
in the ordering of 1.

ILet two such typical numbers be

L) = (x+l) + 31,]_ 12 = (x+l) + 352,

i i
=31 mod B = 32 mod B

in which £;, 4, are non-negative integers.
Without loss of generality, we assume Ly > I, i, > 1.

The adjacency relation in 1 requires that

Ly -1 = (37" moa B) - (3% moa B) = 2L, mod B.

. ) '




But

and 2Ly = 2(x+l) + 641 = 1 mod 3.
Hence LIp = Iy is not congruent to 2¢I,.
In a like manner, one can show that those in M with *2 as

coefficients cannot be adjacent in the ordering of i.

Therefore, the weight of A.3 is given by

B-1

2'X=2'T,

which is also the distance of the code. For the case when

B = 4x-1, we have a minimum distance equal to 2 E’Ei .

A General Class of Multiple Random Error-Correcting Codes

It has been stated that any integer can be expressed as a product of

prime, and in particular,

B-1 B-1
2B-1 . 1 =<2T - 1)<2T+ 1

B-L Nk
=\22 - HPi i,
i=l

where B is a prime, with 2 as a primitive root. Since B must divide
B-1
22 4 l) » 1t follows that one of the primes, p; must be equal to B,

with ¢; = 1. Without loss of generality, let P = B and Oll = 1. The
generator A chosen for the binary cyclic code discussed in the previous

section clearly is given by
B-1

=== k
i=2



With such a cholce of A, we have a cyclic* code, having B code words, including
the all-zero code word.

Now choose A such that

Bl o\ k
@2 -1) [ ™
1=2

pj7J

A=

This will result in a code having B e pj7j code words of code length (B—l),
provided that e(2,A) = B-1 and which consists of disjoint cyclic subsets of
code words. We can still call it a cyclic code, however, in the sense that
any code word can always be obtained by cyclic-shifting some other code
words. This is the practice in cyclic algebraic codes.

The determination of the minimum distance is no longer a simple matter
since each cyclic subset must be examined. Referring to the notation already
developed in the proof of Theorem 2, we note that the central interval of Ni
was uninterrupted since 2 is a primitive root of B. Now, for the determination

of the minimum distance of each subset, the central interval of

N; = 21 mod.<? . pj7%>

(which remains to play the important role of determining the minimum welght) is
no longer uninterrupted. Thus the number of residues modulo (B pJ7J) that

fall within the central interval can be different for each subset, and it is

*It 1is cyclic in the strictest sense, that is, every code word can be
obtained by cyclic-shifting any other code words.

-16-




this number that gives the minimum distance for the particular subset.

An algorithm is formulated to count the number of residues modulo
(B » pj7j) that fall within the central interval for each possible subset.
However, when pj73 becomes large, the counting process becomes a tedious
one, even for a computer. The actual computation only counts for half of

the word length since the other half is its complement, from the fact that

B-1
A has the factor(22 - %) .

Fig. 1 is a plot of ;§§ (transmission rate) versus é% (the 'error?
correttability rate) for various code lengths n = B-l. We use only half
of the code length. Therefore, two code words are obtained from each
original code word, one being the complement of the other. The minimum
distance, d, of the original code word is also halved, but the ratio d/n
remains unchanged. Also super-imposed on the same plot are the Hamming

upper bound and Varsharmov-Gilbert bound.for n — oo.

Burst Error Detection and Correction

For the ecyclic code presented at the beginning of this chapter, we have

the code word A+l in its binary fom

Al = al 320008.5_1 » a-i = O,l-

As a result of generation, this code word begins with [logaB]* zeros, and
both a[logaB]+l and ag.1 will be ones. Thus any error pattern of length
B-2 =~ [logaB] or less cannot be a code word, since it represents a number

leSS than. Ao That is, fOI' e = 0 Ooooo e ocoeB_e eB_l or itS

[1logyBl42

cyclic shifts, where e # 0, then e # O (mod A) and the

[log,Bl42 * B-1
burst is detectable.

-17-
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Fig. 1 Transmission Rate (gﬁlg) versus the "Error" Correctsbility Rate (2%)
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Before we mention the Fire code analogy in arithmetic codes proposed
by MandelbaumB, we need some definitions. A number N is said to have length
nif 20 > N> 2271 .1, The power of a number is the largest exponent whose
coefficient is non-zero in its binary representation. Finally a number N
is said to belong to an exponent e if e is the least positive integer such
that p divides (22 % 1).

Here we simply state the theorem which provides the method of construct-
ing the burst error-correcting codes. The proof is cgntained in the references.
The theorem states that the arithmetic code generated by A = (2°-1)p will
detect any combination of two error bursts E = 21El + 2JE2 provided
c-1 2 by + bp, where b1, bp are the length of the burst errors E;, Eo
respectively, p is a prime and its power at least as great as the length of
the shorter burst, and provided the length of the code 1s no greater than
the least common multiple (ICM) of ¢ and the exponent e to which p belongs.
Let by > by, then p > 2bl -1l. If c is an even integer, then the arithmetic
code generated by A = (2%-1)p can detect any two bursts each of length b or
less provided ¢ > 2b and p > 2°-1. The length is less or equal to the LOM of c
and e, where e 1s the exponent to which p belongs. This code will correct
a burst error of length b or shorter. For a given burst-length b, we limit
the choice of p within this bound 2P+l > p > 2b-1 for lowest necessary
redundancy, since, if p > 2b+l_j we can correct a burst error of longer
length. For this choice, p has a length of b+l, and with the minimum choice
of ¢, i.es, ¢ = 2b, A has a length of r = 3b+l which is the number of check
digits.

Now for any burst error-correcting code of length n, the residues of

A belong to mutually exclusive classes. In order to correct burst errors

-19-



of length b or less, it is necessary that there must be at least 2b distinct

classes, each contalning n distinct residuvues, i.e.,
b . A-1
2" =5 .

The arithmetic code gemerated by A = (2°-1)p, where 2°+1 > p > 201
and ¢ = 2b, corrects burst error of length b. The above inequality is thus

satisfied. It follows that

ob 23ty p3bHl

J

n n
then

n < 220+l _ or-b
we have r-b - logp, n > O.

This is the bound for the ideal case. However, with the arithmetic "Fire"

code, a further constraint is given by
n < IcM(e,c).

Thus for a given b, hence r, we obtain the smallest redundancy by meximizing

n. Here we have ¢ = 2b and

e = Eei » Wwhere v is a positive integer

for v =1, e is even and hence n < (p-1) * b,
V =2, if e and ¢ are relative primes, n < (p-1) * b,
if they are not relative primes, n < (p-1) b,

vV = 3,4,.0.,it 15 obvious that n < (p-1) * b.

Thus a bound for the "Fire" arithmetic code is given by n < (p-1) « b
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or n < (2P*l-1) . b,

therefore,

r-b-logyn > r-b-log b - log(2P*1-1)

= 2b+l - log b - log(2P+l-1), as r = 3b+l.

If v = 1, and p-1 is relative prime to ¢ = 2b+k, where k > 0, let us investi-
gate whether any improvement in redundancy can be achieved, that 1is, if there
is a greater gain of information bits than that of check bits.

For simplicity, let us write
g, = 2b+l - log b - log(2*1-1) for ¢ = 2b,

then
g, = 2b+k+l - log(2b+k) - log(2P+l-1) for c = 2b+k.

We have an improvement in redundancy, if and only if g, < g,, 1l.e., it results

in a bound that is closer to zero. For 8y < 8ys We must have

k - log(2b+k) < - log b

or simply log 2255 >k
2b+k k
_—>2
b
or k > b(2k-2),

which is only satisfied if k = 1. That is, by choosing ¢ = 2b+l such that
¢ and the exponent of p(= p-l) are relative prime to each other, we have
gained more than one information bit at the expense of one additional check

bit. For k > 1, there is no improvement.
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Two bounds for ¢ = 2b and ¢ = 2b+l are shown in Fig. 2, the zero line
being the ideal bound. For large b, the two bounds converge. We also show
the range of redundancy as decided by the choice of p for each given length
of burst-error to be corrected from b = 2 and b = 10. The number of p oOne
can choose increases as b increases. It is noted that the prime p that
gives the least redundancy (closest to the bound) is not necessarily the

largest prime within the range 2b+l

>Pp > 2b-l. In addition, the primes
that result in the least redundancy in the two cases ¢ = 2b and ¢ = 2b+l
are not necessarily the same. We also include the arithmetic codes that
are generated by prime numbers as presented by Stein7 and show that these
codes are considerably better than the "Fire" code. In Table III we have

an exemple of the arithmetic Fire Code correcting burst error of length 5

or less to illustrate some of the points mentioned already.

TABLE III

c =2b 8o = 2.68 ¢ = 2b+l g1 = 2.55
P Length n r-b-log n length n r-b-log n
37 180 3.51 396 3.37
L1 20 6.68 220 h.21
43 T0 L,87 154 L.73
L7 230 3.15 253 4.01
53 260 2.98 572 2.84
59 290 2.82 638 2.68
61 60 5.09 660 2.63

PP
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CHAPTER II1
NON-BINARY ORTHOGONAL CODES

Se H. Cha.ng

Introduction

An effective set of signals for use in a channel with additive white
Gaussian noise is the orthogonal set.3 Methods of constructing orthogonal
continuous waveforms are widely studied. The construction of orthogonal
binary waveforms (orthogonal codes) is based primarily on Hadamard matrices.
A Hadamard matrix is an orthogonal matrix whose elements are the integers
+1 and -l. Hadamard mabtrices of various orders have been constructed
through the generation of pseudo-random sequences of the types (1) maximum
length sequences (m-sequences), (2) quadratic residue sequence (or Legendre
sequence), (3) twin prime sequence, and (4) Hall sequence.® It seems that
no such study has been made for the construction of orthogonal matrices
using integers (or rational numbers) as elements, although their uses in
non-binary coding can be anticipated. Furthermore, it is felt that such
study may bring the two areas of endeavor, discrete coding and waveform
design, closer to each other.

In the next section the construction of Hadamard matrices by means

of binary m-sequences is explained.

Construction of Hadamard Matrices

It is easier to explain the method of construction by a specific

example. Let us choose to construct a 16 X 16 Hadamard matrix. First



we select an irreducible primitive polynomial of degree 4 over GF(2)

£(x) = x* + x + 1.

Then a linear recurrence sequence can be generated by the following shift

register circult when, say, 1000

output —€ 1 - 0] < 0 = 0 -

is originally stored in the register stages before the shifting is started.

The sequence of period 15 appears as follows:

100010011010111.

Next, the elements 0,1 of GF(2) are mapped to the two integers, namely,

n(0) =1
T\(l) = =1,

The sequence becomes

-1111-111-1-11-11-=-1-1-1.

This sequence, together with its 14 cyclic shifts form a 15 X 15 matrix.
With the final addition of & row and & column of 16 l's each, the construc-

tion of Hadamard matrix is completed.
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This construction procedure is based upon the following property of

the m-sequence.

bt e
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-1 1
-1 -1
l1-1
11
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1
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-1
-1
-1
-1

1
-1

]
FREEEREHPR

see8iy B4l 4200058401

which is of period r = 2™-1. The autocorrelation function of this sequence

relative to the mapping 1 is

I

B(x) =) n(ay) nley o).

i=l

]
FRFEFRERERPHRPRFP

-1
-1
-1

-1
-1

Let the infinite sequence be represented by

-1

R

For the mappings defined above, @(t) can assume only two values,

g(r) =

#(t) = -1 if T # O mod. r.

r if T = 0 mod.

r

If we denote the core® of the Hadamard matrix H by H', then

(H')@E")T = (rel) I-d,

*The core is the matrix before the addition of a row and a column of l's.
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where I is the r X r identity matrix and J is the r X r matrix in which

all entries are l's. Consequently, we have

H HT = nI,

where n = r + 1. Thus the row vectors of H can be used to design waveforms
which are mutually orthogonal. A biorthogonal set of waveforms can be

derived 1f one forms the following matrix:
H
Hb = "H 3

o ~Blnxn

then

B, =

-nInxn nIan .

Orthogonal Matrices Using =1, O, 1 as Elements

Again we use an example to illustrate the procedure. An m-sequence
over GF(3) of period r = 33-1 = 26 can be generated by using a shift
register circuit which corresponds to the irreducible primitive poly-

nomial over GF(3)
£x) = x3 + 2x + 1.

+

)

output 1 -t 0 0

A

Starting with the stored digits 1 O O, one period of the m-sequence 1s as

follows:
10020212210222001012112011.
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If we use the following mapping of elements GF(3) into elements over

rational field

1(0) = 0
(1) = 1
(2) = -1,

|
\
|
i The sequence becomes
!

100-10-11-1-110=-1-1-100101-111=-1011,
In this case, the autocorrelation function has the following valuesl
$(0) = 2.3%°L = g(r)

-1
$(5) = -2-3"

#(T) = O elsewhere in the range 0 < T < r.

That 1s, if one forms a matrix A, with the rows consisting of the above

sequence and its r shifts, then

My ox '}‘stz
2 2 2 2
AATa
‘Mﬁxﬁ }‘IEx.I.'.
2 2 2 27} »

where A = 2.3m-l = 2¢3 = 6, since m = 2. The 26 rows can be used in the
design of biorthogonal waveforms using -1, O, 1 as elements. However,
the number of waveforms is equal to the dimension of the row vector,

instead of twice the dimension as in the case of binary codes.



A simple decomposition of the matrix A enables one to find an orthog-

onal matrix of the order % X % . Thus, it is noted that A can be written

v=[s o).

as

And it can be shown that

(VL]
X
UM L)

Thus B is indeed such an orthogonal matrix. This matrix is depicted below

in its complete form.

1 0 0-1 0-1 1-1-1 1 O -1 -1]
110 0-1 0-1 1-1-11 0=l
1110 0-1 0-11-1-210
01110 0-10=1L1-1-11

-1 01 110 0-10-11-1-1
1-1 0 1L 110 0-10-11-=1

B= |1 1-1 01 110 0-1 0=1 1

-1 1 1-1 01110 0=1 0=
1-111-1011100-120
0 1-111-10111 0 0-=1
10 1-111-1 011100
0 1L 0 1-111-101110

001 01-111-1011 1.

The minimum Hamming distance among the row vectors is 9. This is greater
than can be provided by Hadamard matrices where the minimum distance
is always .ré’. , n = r+l. A set of 26 biorthogonal row vectors each of

dimension 13 can be obtained by putting a -B matrix under B.

Orthogonal Matrices Using O, *1, £2 as Elements

The m-sequence over GF(5) has its period equal to r = 5%-1. Under

similar mappings as before the autocorrelation function @#(t) is again




zero for all values of T within the period except for T = O, % . Thus, if

@]

1(0) =
1(1) =
n(2) =
1(3) =
(k) =

-

\V)

J
no

!
—

then
g(0) = -§(3) = 2.5"

@(t) = O elsewhere in the range O < T < T.

Orthogonal Matrices Using 7 Integers as Elements

The autocorrelation function of the m-sequence over GF(7) relative

to the mapping

7(0) = 0

1(1) =1 n(6) = -1
1(2) = 2 n(5) = -2
1(3) =3 n(k) = -3

behaves differently from those over GF(3) and GF(5) in that it is not

zero throughout the ranges 0 < T < g , and % < T < r where r = p?~1 = 701,

Rather, it assumes the following values:
$(0) = Le7™ = §(x)
ﬂw=¢%)=@ﬂ=¢6w,t=§%=§
M%)=ﬂ?=-aﬂ=¢@ﬂ
p(3t) = B(5) = k7™

@(t) = O elsewhere in the ranges 0 < T < % and % <t <r.
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The values of @$(t) and @(2t) are calculated from the following considerations.
There are two primitive elements over GF(7), e = 3 and 5(= -2). Take e = 3

for example, the various powers of 3(mod. T) are

30 3L 32 33 3% 35 36
1 3 2 =1 =3 =2 1l 1.

When T = t, the autocorrelation function can be expressedl as

B6) w3 ) n(@) n(3)

all
o GF(T)
n(x) n(3x)
0 X 0
1 X 3
2 X -1
3 X 2
-1 X -3
-2 X 1
+ -3 X -2

) a@) 8(3) = 2L(1)3) + @)(-1) + (B)@)] = 2(1).

When T = 2t

Jet) = 571 ) m@) n(3Pa) = L) () n(ea)
all & all &

= po-1 X 2[(1)(2) + (2)(-3) + (3)(-1)] = p®~L x 2(-7) = -2 X 7™,

Note that the numbers in the 2 brackets differ by a sign only. If we make

a new mapping such as
0O -» O
1 o *a
22 5 b
13 © *c,




then it may be possible to equate the value of the number inside the

bracket to zeros. That is, we will set

(a)(c) + (b)(~a) + (e¢)(b) = O.

Since there are 3 unknown with one equation, we may assign arbitrary values

to two unknown and solve for the third. Thus, let

a=1

b=2

sb_

=2,
atb 3

The new set of elements are in the rational field, namely, O, *1, *¥2 and
5 » If integers are desired, they may be rescaled into the following
elements 0, *3, *6 and *2,

As an example, let m = 2, the m-sequence over GF(7) generated by
the irreducible primitive polynomial f(x) = x2 + 6x + 3 is of period
P2-l = ,'"80

1 60~-3-3~1 1-3 1 3 0-2-2«3 3-2 3 2 01 12 2 1 2
-1 0 3 3 1-1 3-1-3 0 2 2 3-3 2=3-2 0-1-1 2-2-1-2
The orthogonal matrix of order 24 X 24 using as elements the numbers

0, £3, 6, £2 is shown on the next page.
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Orthogonal Matrices Using 11 Integers as Elements

The factors which contribute to the values of $(t) of the m-sequence

(note that 2 is a

over GF(1l) at T = t, 2t, 3t and 4t are as follows:

primitive element, its powers are 1, 2, 4, -3, 5, -1, -2, -4, 3, -5, 1).

1l

al

g(t): Z n(@) n(2a) = 2[(1)(2) + (2)(4) + (3)(-5) + (4)(-3) + (5)(-1)] = 2 X (-22)

g(et): Z n(@) n(ka) = 2[(1)(4) + (2)(-3) + (3)(1) + (W)(5) + (5)(-2)) = 2 x (11).
all &

The expressions for $(3t) and $(4t) contain factors inside brackets same as

If we make the following mapping

above.
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1 o *a
2 - b
3 - *c
i o g

I5 » *e ,

then equate the expressions for the numbers inside the brackets to be zero,

ab + bd + (c)(-e) + (@d)(~c) + e(-a) =0

and ad + b(-c) + ca + de + e(-b) = O.

It turns out that if one assigns a = 1, b = 2, ¢ = 3, a solution to the two

equations is d = 4 and e = - % « Therefore, a suitable mapping to use for the

construction of an orthogonal matrices of 11 integers is such that

n(0) = 0

n(£l) = £2
n(¥2) = k4
n(£3) = %6
n(th) = +8
n(£5) = ¥1.

Extension of this procedure to p = 13 leads to equations whose solutions

contain elements of irrational numbers.

Reduction of Types of Elements

Under certain conditions, the number of types of elements can be reduced
from a higher prime number to a lower prime number without destroying the

orthogonality. For example, the 12 X 12 orthogonal matrix of 5 elements
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can be reduced to that of 3 elements by mapping *¥2 onto *1. The resulting

matrix is as follows:

1 0 1-111-10 11 1 I
-11 0 1~-1 1 1-1 0111
-1-1 1 0 1-1 1 1-1 0 11
-1 -1~ 1 0 1~-1 1 1-1 01
-1 -«l1-1«11 0 1-11 1-1 0
B = 0-1-1-1-11 0 1-1 1 1-=-1
l 0-1-1-1-1 1 0 1-1 11
-1 1 0-1~-1-1-11 0 1-11
-1-11 0~1-1-1-1 1 0 1-1
l1-1-110-1=-1-1-1 1 01
-1 1-1-1 1 0-1-1-1-1 1 O
1 0-1 1-1-1 1 0-1-1-1-1 1},
Other examples are listed in the following table:
Original Number Reduced Number Mapping of
of Elements of Elements Elements
5 3 a=b=1
T 5 a=b=2,¢c=1l
T 3 a=1l,b=c=0
11 9 a=2,b=c=6,d=10,e=1
11 7 a=3 b=mc=d=b,e=2
11 3 a=b=c=d4d=0,c¢e (a.ny values)

Products of Orthogonal Metrices

There are two types of products of orthogonal matrices which lead to

new orthogonal matrices.

Kronecker or tensor product.

One is the ordinary product and the other is the

and B are orthogonal matrices

(1) AT = AT and BBT = NI

This statement is true because, assuming A

(aB) + (AB)T = A(BBT) AT = A(M,T) AT = A NI

(A and B of the same rank);
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(2)

= (}\aIa) X (lbI'b) = }‘a)‘b'Ia.b o

Note that A and B are not necessarily of the same rank.

(AXxB)e (AxB)T = (AxB). (AT x BT) = (aaT) x (B8T)

Some examples for each of the two types of products is given below.

(1)
0 1 -1 -1 0 1 -1 -1 i
apo |l O Ll 1 0 1-1 2
*P=Ei11 1 0 1{°*l1 1 o0 1T |0
-1 110 -1 110 2
(3 elements) (3 elements) (5
11 11 0 2 1 2 5
1-1 1-1 2 0 2 -1 3
AB= |1 1-1-1|°|1~2 0 2/=]1
1-1-1 1 5 1.2 0 1
(2 elements) (5 elements) (6

(2)
0 1
0 1-1-1 10
1 1 10 1-1 11
AXB=17 _1|X|1 10 1{=1]-1 1
-1 110 0 1
1 0
11
-1 1

(2 X 2) (b X L)

It is evident that these +two types of products provide

for generating new orthogonal matrices from old ones.

-2 0 -
1-2 0
2 1-=-2
0 2 1

elements)

3 1 1
-5 -1 1
1-5-3
-l 3 -5 .

element;3

]
§
|
1

!
HOFHFOMH

o+

!
® OFRFHOKRFM

1
HFHMFHOFKFEFO

O
HOHMHKFOHM
(OFH O

(8 x 8)

recursive methods



Construction by Inspection

The following orthogonal matrices are obtained by inspection

(1) 2x2 (3 level or less) (2) 4 XL (7 level or less)
a b a b c a
-b a -b a -d c
-=c d a=-b
~d -c b a

(3) 8 x8 (15 level or less)

a2 b-c d e f g h|
-b a d ¢ ~-f e -h g

¢ d a b=-g h e ~-f
-d ~¢c =-b a~h=~-g £ e
-e f g h a-=-b ¢ -4
-f=-e-h g b a -4 -
-2 he~e ~f~c d a-=-b
|-h =g £~ 4 ¢ b a].

By assigning suitable values to the letters, some of which may have

the same value, orthogonal matrices of various elements can be constructed.

Summary and Discussions

The pﬁrpose of this study is to explore the use of the m=-sequence for
the construction of orthogonal matrices using more than two elements 1 and
-1, It is based upon the properties of the autocorrelation function ¢(1)
of the m-sequences of p elements (p = 3, 5, T, 11) relative to certain
mapping ne. The autocorrelation function has the same period as the m-
sequence, i.e., r = p™=1l. Under symmetrical mapping, its values at 7 = O
and T = % differ in sign, but equal in magnitude. Therefore, unlike the
case for p = 2, a segment equal to half period of the sequence is used

for the construction of the orthogonal matrices. Furthermore, for cases

P =7 and 11, §(1) assumes non-zero values under ordinary mapping for 7
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smaller than a half period. These are restored to zero by suitable remapping.
Similar procedures applied to the cases for p > 1l result in solutions in
the elements of irrational or complex field.

It is possible to derive orthogonal matrices using smaller number of
elements from those using larger mumber of elements. It is also possible
to obtain matrices using larger number of elements from the products
(ordinary) of matrices using smaller number of elements. Kronecker products
provide a method of expanding the sizes of orthogonal matrices.

The design of orthogonal matrices using more than two elements is an
attempt to use multi-level digits in the design of waveforms for coding.
Such waveforms mey match with the existing channels better than those using
two levels only. It shoudl also be noted that the minimum Hamming distance
(or other measure of distance) among the row vectors of the orthogonal
matrix is usually larger than g.which is a fixed value for any n X n

Hadamard matrix using 2 elements.
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CHAPTER III
ERROR-COUNTING SCHEMES

L. J. Weng

Introduction

Recently, many block codes have been constructed to cope with random
errors. The error-correcting code is desligned to correct tc or less
erroneous digits in each code block of length n. The error-detecting
code is used to determine whether or not a code block of length n contains
errors (assuming that there are no more than ty corrupted digits in each
code block). Unfortunately, the decoding scheme for the error-correcting
codes is, in general, rather complex, and the error detecting code reveals
no information about how badly a code block is corrupted. Therefore, it is
desirable to have an intermediate code which can be decoded rather simply
in comparison to the exrror-correcting code while giving more information
than the error-detecting code.

The concept of error-counting is developed to satisfy this requirement.
The decoding procedure of such a code gives the number of erroneous digits
without referring to their exact positions. In order to be competitive,
it is required that the decoding procedure be far less complicated than
that of an error-correcting code.

There are two ways to obtain error-counting schemes, namely, the
constructing of new codes and the use of inherent error-counting property
of existing error-correcting codes. Some results along both lines will be

glven.
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The Construction of Error-Counting Codes

The technique of block design* has been incorporated here to find a
suitable parity-check matrix. Examples of two classes of error-counting
codes so constructed are gilven below:

(a) n-error-counting codes derived from permuting n X n

identity matrix. The parity-check matrix is given by

P I, I, I, I, eer I I, I, |
Pr I, Ipn Ie I3 ... I3 pmn-2 Iyt
Pr2 I, Ix® I,n3 It ... 1?2 pal o pe
P02 1, It el a0 ... IS ppaded ppan-3
__P:rn—l I, e, I ... Inﬂn-h I,m0=3 In“n'a_ ,
where

(1) P is en n X n matrix whose entries are all zero except
the first column which contains all 1's;

(2) =« is a cyclic permutation matrix (to the right) for
postmltiplication;

and (¢) I, is an n X n identity matrix.

¥Edwin F. Beckenbach (editor), Applied Combinatorial Mathematics,
Chapter 13, John Wiley & Sons, 196k4.




The syndrome , s | of a received vector (or sequence) ,r , is calculated
by

s ,=,r H . (1)

It can be shown that the syndrome is classified according to its pattern
and distribution of weights. This classification corresponds to the

different number of errors in a received sequence.

For example, the parity-check matrix of a (12,3) 3-error-counting code
is

(100 100 100 100
100 010 O0l0 010
100 001 001 001

010 100 001 010
H=|010 010 100 001
010 001 010 100

001 100 010 001
001 010 001 100
001 001l 100 010 .

The syndrome classification is as follows:
(1) Wl _s,] =0 which implies no error, where W[ _s ]
denotes the weight of the syndrome s, .
(2) Wl _s,1 = 3, which is further classified as follows.
(a) Let the syndrome _s, be divided into three
sub~-syndromes LE;A ’ ;qu ) Lin » each

containing 3 digits, i.e.,

S 8 .
Ba= s, B2, 83,




Wl s1 J=wl spl=wl s31=1

or if one of the sub-syndromes is of

weight 3 and the other two of weight

Zero, then the received block contains

a single error.

(b) Otherwise there are 3 or more errors.
(3) Wl .5, =2, 4 or 6 (even) which implies 2 errors.
(%) Wl _s. ] = odd number > 3 which implies 3 or more
errors.

Although the objectives of this class of codes are achieved by simple
classifications of the syndromes, it is a class of high-redundancy. Further-
more, for each pre-specified error-countability requirement only one code
can be obtained. 1In the following, we attempt to construct some more
efficient codes by using "doubly cyclic codes". By doubly cyclic code

we mean thet if \ v ,= vy v is a code word, then vy v
 — l_.g_l] ‘I—-—l—l "‘LJisa.lso

a code word where vi = vy ® and vé = V, % and « is a cyelic permuta-
—_— = W I WL |

tion matrix. Note that vy is not necessarily a code word. An
—_

V2
—_—)
example of 3-error-counting (20,10) code is given below:

[10000001011000001001]
11000000101100000100
01100000010110000010
10110000000011000001

F=]01011000001001100000
00101100000100110000
000101100000L0011000
00001011000001001100
00000101100000100110

00000010110000010011].




The syndrome patterns and weights can be classified according to the
following:
(1) wl _s,] = 0 which implies no error.
(2) Wl _s,] = 3 which is further classified as follows:
(a) If s 1is a shifted version of either

1101000000

or
1100100000,

then the received sequence contains only
a single error.
(b) Otherwise, there are 3 or more errors.
(3) wl _s,] = even integer which implies two errors.

(4) Wl _s,] = odd integer > 3 which implies 3 or more errors.

Error-Counting Property of B-C-H Codes

A sub-class of B-C-H codes can be used as error-counting codes by
simplifying the step-by-step decoding procedure suggested by Massey.l

For a t-error-correcting binary B-C-H code, the matrix

51 1 0 0 eee O
s3 8o 51 1 eeese O
Ly = | -

| S2t-1  S2t-2  S2t-3  S2t-h oot S

is singular if the weight of the error pattern is t-1 or less, and is
non-singular if the weight of the error pattern is t or t+l. si‘s,

the power sums of the errors, are elements of GF(2™). A partial list



of a subclass of the B-C-H code given in Table I shows that L _; the matrix
can be obtained by deleting the last row and the last column of the matrix
Lt' Similarily It-E can be obtained from L. and so on until Ly is
obtained. Each of the Li's has the property that it is singular 1f the
weight of the error pattern is i-1 or less and is non-singular if the
weight of the error pattern is i or i+l. The error-counting procedures
are as follows:

Step O -seti=1t,

Step 1 - calculate det Ly,

Step 2 - if det L; # O, go to Step L; otherwise

go to Step 3,
Step 3 - decrease 1 by 1 and go to Step 1,

Step 4 - number of errors = 1,

Step 5

stop.

This 1s an easy error-counting procedure provided a calculator over
GF(28) is available. The calculation over GF(2M) is, in general, far more
complicated than that over GF(2).2 In order to simplify such calculations
which are used in Step 1, we establish the following notations and theorem

that facilitates the determination of the value of det Li'




Table I A Partial List of B-C-H Codes Adaptable to Error-Counting

n k t n k t
T 4 1 127 | 120 1
15 11 1 113 2
T 2 106 3

5 3 99 L

31 26 1 92 5
21 2 85 6

16 3 78 T

255 | 247 1

63 57 1 239 2
51 2 231 3

ks 3 223 4

39 y 215 5

36 5 207 6

30 6 199 T

191 8

187 9

179 |10

171 |11

163 |12

155 |13

147 {1k

139 |15

Let 0, @, ot,...,020-1 be elements of GF(2%). If each 0! is mapped
into & column vector O] of m elements over GF(2), then ¢1] can be obtained

by

o] =i o) = Td

=47-



where T, 1s the companion matrix as defined by

T, = [all am]]

-

o]

loos « ¢« - O]
OO+ s s OO
OF ¢+ ¢ ¢+ OO

L]
—

For each LJ: with elements written in terms of ol's we have

111 112 19 4]
alla a]_za e e a.ija 'j

3= |. . .
i'l i

where ayy, 's are either one or zero. We can form a binary matrix

i i i F
11 12 1)
a'll'ro a'12To e a':I..jTo

L'= . . .

L] i . i L i
aJlTo*jl ajeTojg ceoe ajjTo'jJ .
h—

The matrix Ly is & § X J matrix over GF(2™) and the matrix L3 is a Jm X Jm
matrix over GF(2).

Now, the following theorem can be established:

Theoren

det Ly = O if and only if det L3 = O.




Proof
If det Lj = O, then there exists at least a set

of columns (or rows) which are linearly dependent.

Let
~ k] TN
151 1%
a., O a
1ky alkr
ol - + e +0°T =0 (1)
k1 ot ikr
aakl"‘i %3k
or
— i7p+sy ] S
aq, & alkga ¥
- + eee + . = O (2)
ity 1k +Sr
Bjk 04 dJ ajkrdi T
r<j
191+ 1kt
and ML 4 L B4k, IF T 20 for £ = 1,..0,3. (3)

This implies that

148 i1yts
[aZKTOLk 1 + see + a!,krTolk r] af] = 0 for £ = l,oc-,J
f = 1’2’3,ooo,m-ll

(%)
1yt 1330+
e ML 4 L b e, KT 20 for 4= 1,e..,. (5)
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Now suppose that

det Ly #0 and gdet L5 = O.

det Ly # 0 implies that Equations (1), (2) and

(3) do not hold.

But LS = 0 implies that a set of columns are linearly dependent.

Suppose this set of columns are chosen such that dy(d)y < m) columns are

from

lk.To

]
L?jkioJE_-

1 i i -
But a Tilk = 81y [allk] a lk] eee 8 lk&m.l]] , hence a linear

dk columns of which is

[,

Therefore, the dy column combination of (6) is

-
alk Bkdi ]
8oy gk aizk

or

]
L?Jk Bk otk ]_ .

Then the linear combination of columns can be written as

-50-
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combination

(7)

(8)



g
Bk o k] 0
) -1 (9)
k=1 .
a.Jk Bk (04 ‘jk] 0
or equivalently
4
k othk .
Zahka a ]:.-o for h=1,2,e0.,3. (10)
k=

Returning to GF(2™) field, we have

1 .
Zahk Bkah.k=o’ h=1,2,..¢,J, (11)

where P¥'s are elements of GF(2™). Therefore, we cen obtain £ columns of

Lj such that they are linearly dependent. This is in contradiction to our

Previous assumption. QeE.D.
With the help of this theorem, the error-counting process can be

greatly simplified. In Step 1 we need only to calculate det L{ which

is a binary matrix instead of det Ly which is a matrix over GF(2™). Further-

more, all the elements of det Lj'_ can be obtained from error syndromes and a

linear shift-register.
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CHAPTER IV

DATA TRANSMISSION BY PULSE AMPLITUDE MODULATION THROUGH A NOISY CHANNEL
WHICH HAS BEEN RANDOMLY SELECTED*

Re A. Gonsalves

Introduction

We consider here a design of a fixed equalizer for Pulse Amplitude
Modulation (PAM) signals transmitted over a noisy, randomly-selected
channel. The linear, time-invariant equalizer is chosen to minimize the
mean-gquare error between transmltted and recelved message sequences when
averaged over all realizations of the channel, the additive noise sequence,
and the message sequencee.

By "randomly-selected" we mean that the channel, assumed linear and
time-invariant, has a system function R(f) which is a realization of a
stochastic process. One of the results of the analysis is to determine
what characteristics of thils process must be known in order to design the
fixed equalizer using our mean-square error criterion. As one would
anticipate, only certain second order statistics are required.

Although we assume that the channel is time-invariant, the results may
be applicable to the equalization of a time-varying channel when the varia-
tions are slow relative to the correlation times of equalizer output signal

and nolse. In fact, the fixed equalizer might be used to best advantage in

*Phis work was done in collaboration with D. W. Tufts of Harvard
University, and is a continuation of studies initiated at Bell Telephone
Laeboratories, North Andover, Massachusetts.




conjunction with a variable, automatic eq_ua.lizerl’2

for a slowly time-
varylng channel. That is, due to the randomness in the system the automatic
equalizer will be matched to the channel only in a probabilistic sense,
although the residual errors may be small. To minimize the effects of
mismatch one would follow the adjusteble equalizer by the fixed equalizer
considered here. For such a system this analysis may be used to generate
appropriate specificatlons on the automatic equalizer.

The design of linear, time-invariant equalizers for a noisy, fixed
channel has been treated in detail (see references 3-6 and 9-13 for examples ).
The analysis of a noiseless, single-side-band system with small sampling
time error and carrier phase error has been performed by Franks.7 The noisy
channel with timing Jjitter has also been s*t:ud:Led.s’8 These analyses are
special cases of the more general problem treated here, except that Joint

transmitter-received optimization is treated in reference [3], [5), [6] and

[8] and finite message sequences are assumed in reference [2].

The System Model

The model we wlll study is shown in Fig. 1. In that figure the

received PAM signal before noise addition is y(t), a real waveform given by
®

y() =) e x(e), )
k=-

where r(t) is the received pulse shape with Fourier transform R(f),

o0

R(£) :ﬁ(t) e 92T 4t (2)

-Q0

-5~




{ Channel | y(t) 2(t) | Equelizer _}f {bg)
ek} o R(£) —————»T——————» W (e) LR

Noise with
Power Spectrum

N(f)

Figo 1

The random message sequence {a.k} is assumed to be stationary with message

spectrum M(f), a periodic spectral density function given by the formula

M(f) = my + 2?:::1 cos 2miTf (3)
i=1
in which {m;} is the discrete autocorrelation function of the random
sequence {a.k}. The additive noise is assumed to be stationary with known
power spectrum N(f). W(f), the filter to be determined, has a real impulse
response which will, in general, be non-zero for t < O. The sampler samples
the output of W(f) at kT seconds (plus a fixed T' seconds to allow approxima-

tion of the non-realizable W(f)) to give the received sequence {by}.

The Fixed Equalizer

Defining IR as the mean-square error between ay and by when averaged
over all possible message sequences and noise sequences, one can show that

I is given by the formula [5] [6]

QO [¢ 0] Q
Ip = mg - [M(£) R*(£) w*(g) |2 - & R(f - L) | ar + [N(e) |w(e)fPas, (&)
. -0 [ T i-—-Zoo T ] -on'[
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which is independent of the time index of k because of the assumed stationarity
of message and noise. In (4) and throughout an asterisk denotes complex

conjugation. Averaging Ip over all realizations of R(f) ,» we have the average

error A,

A=Tg, (5)

which is to be minimized by proper choice of W(f).
A straightforward application of the calculus of variations yields the

following condition on W(f) for A to be a minimum:

a
Nif 1 k k *roy
ﬁ-&% W(t) + 5 k.ZmR*(f) R(f - ) W(E - -T-) = R (f) (6)

for all frequencies except those at which all R(f)'s are zero, and W(f) = O

elsewhere. For such a W(f) the resulting Ay, is

oo

Apin = mg - [M(£) W(£) R(£) af. (7)

-Q0

We will discuss the solution of (6) for W(f) momentarily, but first

we notice that for solution we must know the average channel transmission

R(£), which is the mean of the process and R¥(f) R(f - 1-';.), the frequency
autocorrelation of the process, at integer multiples of the frequency shift
?]I.‘: cps. These are the quantities which must be determine experimentally or
which must be modelled to find the optimum equalizer.

Following Reference [8], we solve for W(f) by writing (6) for a set
of frequencies u + % , 1 =0, 1, +2,,.., where u lies in the interval
(o, %). In certain cases the resulting doubly infinite set of equations
(one for each i) can be solved using the theory of Toeplitz matrices.
Note that we need W(f) only for f = O since, for the real time functions

considered here, W(-f) = W*(£).




In cases for which the channel is known to be bandlimited the solution

can be quite simple. For example, suppose
R(£) =0 for |fl> . (8)
2T

(The pulse rate of %‘- pulses per second then correspnds to the Nyquist rate.)

Examination of (6) reveals that W(f) must be zero for f > —21-5 and for

f< % s W(f) becomes

W(E) = E*(r) . (9)

N(f 1 2
ey T 1 Ir(£)|

From (9) we see that if the left-hand denominator term dominates the right-
hand term, the low signal-to-noise-ratio case, W(f) reduces to a filter
matched to the average transmission characteristic R—(f—). In the high signal-
to-nolse-ratio case the filter W(f) attenuates those spectral portions for
which IR(:E‘) |2 is large, reflecting the large expected variations in channel
transmission at those frequencies; also, if R(f) is nearly constant,

W(g) =~ R_(I:i‘—) , as should be expected.

Now suppose that

R(f) = 0 for |£|> -;—;i , (10)

0< A<l (11)

A is a measure of the "excess bandwidth"; that is, we are pulsing at rate
%‘- » slower than the Nyquist rate of };—)‘- . Then examination of (6) reveals

that W(f) must be zero for f > JéT_'!‘.).‘. ,and for 0 £ f < 1-2}'.2‘. > Equation (9)



mist still hold. However, for %%ﬁ <f < Ltk , we follow the procedure

2T
described above to show that W(f) must satisfy the matrix equation

1 oF ¥
By  FRiR| W1 Ry
1 % - (12)
%
'-1_1 RoRy E2 W2 R5 |,

where W, denotes W(f), Wo denotes W(f - %), etc., and

=Nf) 1 2
E(f) = O 1163 o (13)

Solving (12) for W(f) we have

—_ 1 = =—
W RTEE T RZ R?.RZ (1)

BiEp - (P2 (|RIRS

To be more specific in the preceding example assume that the randomness

in R(f) resides entirely in a random delay T. Thus

R(f) = ed2LT | (15)

where T is a random variable having probability density p.(t) and character-

istic function P¢(f),

Pe(£) = o-92RIT (16)
Then we have the expressions

R*(£) = P (£) (17)

|R(£)Z =1 (18)
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and

. k
-jex =7
R RE-5=e” T = Pr(2)- (19)
If we further assume that N(f) = 0, the high signal-to-noise ratio case
then for £ > 0, W(f) becomes
- -
TP, (£) , 0<f i
W(f) = 1 1 (20)
"r Pr(f) - Po(f - ) B () 1-N oo 1R
» —— g
02 2T 2T
1 - e ()

This W(f) is shown in

previous results.7’8

Fig. 2 for small random delay and coincides with

w(f)

= T
\\\ '
i | ! N f
1 0 1-A 1 1+A 1
-T fou 2T T T

Fig. 2 Optimum Filter for Small Random Delay
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Application to Random Phase and Random Delay in PAM-AM

Iet us nos assume that the received pulse shape r(t) is a randomly-
delayed (by T seconds) baseband pulse produced by synchronous demodula-
tion of a passband pulse with Fourier transform Z(f). We assume that the
fractional phase x = 9/2ﬁ of the demodulating oscillator is a random variable
having probability density q,(x) and characteristic function Qx(f). Thus

R(f) is

[e32“x Z(£,-£) + e 97X Z(fc+f)] 32T 1g<w
R(f) = (21)
0 , |fl> W,

where the random variable T has p.(t) and P;(f), as before. The generation
and demodulation of the passband pulse z(t) are depicted in Fig. 3. This

is the channel model for a PAM-AM system.

cos 2nf.t 2 cos(enf t + 6)

ro(t) (:3 Band Pass | (1) :: Low Pass r(t)
Filter Filter

Fig. 3 Generation and Demodulation of z(t)

We assume in connection with (21) and Fig. 3 that rp(t) contains no

energy in the frequency band |fl> W and that the low pass filter cut-off
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frequency W satisfies 142
W= =< of, (22)

Then using the procedure outlined in the previous section we can solve for
W(f). Using this W(f) and assuming 1) that © and T are statistically
independent and 2) that N(f) = O, the high-signal-to-noise ratio case, we

calculate the resulting Apin to be

1-2
Agin =1 - 2 T Qg(1) %/;2T [P (£)|2ar

2 L+
2T|Qx(l)l o7 Pt(f) [PT(f) - P:(% - ) @(-2) PT(%)] af.
L Ey(@la-2)? Vi

2T (23)
We have evaluated the Apjn of Equation (23) for x and T uniformly

distributed over (-x,, xy) and (-7, T,) respectively, and for several

values of A, the excess bandwidth. The results are shown in Fig. 4 and

show explicitly the trade-offs between the three parameters Xgs Tps and M.

10~

104

1072
Amin

10-3]

lO'h

10-9] { | .
107 1073 1072 1071 107©

)

Fige & Apip Versus Maximum Phase Jitter, x,, for Various
Excess Bandwidth, A, and Maximum Timing Jitter, To
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Conclusion

We have specified the linear, time-invariant equalizer, W(f), which
minimizes the mean-square error in a digital system using PAM through a
randomly selected channel, R(f). The equalizer is specified in terms
of the average transmission, i—(—f—)-, the (frequency) autocorrelation func-
tion, R¥(f) R(#), the message power spectrum M(f) and the noise power
spectrum N(f).

The solution for W(f) has been demonstrated for the bandlimited
case where the available (double-sided) bandwidth is less than twice the
pulsing rate of EDl-pulses per second. We elaborate upon thls solution to
show the trade-offs between bandwidth, timing errors and phase errors in

8 PAM-AM system.
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PART II SUMMARIES OF SCIENTIFIC REPORTS
CHAPTER I

SCIENTIFIC REPORT NO. 1
PULSE SHAPING BY MANIPULATING TRANSFORM ZEROS
J. B. Campbell
S. He. Chang

D. W. Fermental
N. T. Tsao-Wu

The treatments of pulse design problems in recent papers directly
or indirectly make use of Fourier transform properties established in the
theory of entire functions. The basic property used is that since it is
an entire function of exponential typel, the Fourier transform of a pulse
possesses and is characterized by an infinite set of zeros in the complex
frequency pla.ne.2 Pulse design can be effected by operations on these
zeros, as indicated in recent papers.

The possibility of a transform zero canceling a system function pole,
was used by Gerst and Diamond3 t0 design signal inputs to a system to yield
pulse outputs for the elimination of intersymbol interference. They have
discussed the following problem. Given a time-invariant, linear system, find
an input such that the output is a pulse. They show that in the lumped-
element (and in certain cases, transmission line type) systems, it is
possible to have both input and output as pulses, and that this is effected
when the poles of the system function are canceled by zeros of the transform
of a pulse. In their equivalent time-domain solution, Gerst and Dlamond

show that differentiable pulses can be valuable design tools.
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In an extension by Campbellh of the Gerst and Diamond work, differ-
entiable pulses are used to design pulse inputs that correspond to a set
of orthogonal pulse outputs of a given system.

As pointed out by Hofstetter”? and Walther6, a pulse is uniquely
determined by its energy density spectrum if the zeros of the spectrum
function all lie on the real axis of the complex frequency plane. Given
e pulse whose Fourier transform has zeros in the upper-half (lowér-half)
frequency plane, Hofstetter and Walther have shown that "flipping" of
zeros to the lower-half (upper-half) plane can be used to find a set of
pulses with the same autocorrelation function (or energy density spectrum).

In solving a related problem7 Fermental has shown that, under certain
conditions, transform zeros can be "flipped" to obtain a set of orthogonal
pulses with the same energy density spectrum.

This report presents an investigation into the effect produced on
a pulse by manipulating its transform zeros. In particular, zero manipula-
tions for the folowing purposes are discussed. (1) By removing transform
zeros, a pulse is shaped to have more derivatives. The zero removal process
is extended to yield an infinitely-differentiable pulse. (2) By zero
deletion and shifting, a pulse is made to approximate a chosen waveform.
(3) By zero deletion and shifting, a pulse is shaped to have: (a) a
specified amplitude density spectrum (e.g., rectangular-pulse-like); or
(b) a specified energy density spectrum (e.g., complementary to "colored"

noise of the 1/f type).
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CHAPTER II

SCIENTIFIC REPORT NO. 2
PROPERTIES AND APPLICATIONS OF AUTOCORRELATION-INVARIANT FUNCTIONS

R. A. Gonsalves

This work resulted as a by-product of a research effort to find a set
of orthogonal time functions, non-zero only for t > 0, which have the
same autocorrelation function. Such a set 1s the set of Laguerre functionsg

whose first few members are

Each member of this set has an autocorrelation function which is

I3l
Note that the first member of the set of Laguerre functions has exactly
the same form as its autocorrelation function for t (or ¢) > O. Such a
time function fy(t) whose autocorrelation function is fy(lt|) is called
Autocorrelation-Invariant (A-I); that is, fy(t) is invariant under the
operation of autocorrelation. The study of the class of A-I functions

is the subject of this report.
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It is shown that A-I functions have several properties of interest to
the communications engineer. These include:
(a) fN(t) is the right half of an ACF, providing a simple
sufficiency test for a specified function to be an ACF.
(b) Associated with fy(t) and generated in the manner of
the Laguerre functions, is an orthogonal set whose
members are useful as basis functions in the design
of orthogonal signalling waveforms wlth specified
ACF's.
(¢) fy(t+r) is the degenerate kernel of an integral equation
whose N+l eigenvalues are real and unity in magnitude,
and whose eigenfunctions span.}ﬁ, a finite-dimensional
subspace of Hilbert space. This property allows several
results in the characterization of time functions in'}%.
The lLaguerre and legendre functions of the first kind, two sets of
A-I functions, are defined and discussed. A curious orthogonality property
of any member of the former set, under time translations, 1s presented,

giving rise to a conjecture concerning all A-I functions.




CHAPTER IIT

SCIENTIFIC REPORT NO. 3
ORTHOGONAL SIGNALLING PULSES WITH THE SAME AUTOCORRELATION

Denis W. Fermental

A problem of some interest to communication engineers is the simultaneous
transmission of orthogonal pulses having the same duration with independent
detection at a receiver by matched filtering and sampling. A question that
arises naturally in this connection is, how closely can such pulses be allke
in bandwidth? In this report a method is developed by which orthogonal pulses
can be constructed with identical bandwidths. More precisely, these pulses
have the same energy density spectrum. The technique consists of forming
linear combinations of some sufficiently differentiable pulse and its deriva-
tives to generate the required waveforms. The report determines criteria
for the coefficients of these linear combinations and shows that the restric-
tions on the sufficiently differentiable pulse may be expressed in terms of
the moments of its energy density spectrum.

To clarify the approach which is adopted, we examine the following
special case. Let the pulse g(t) have a bounded derivative g'(t). Then

for any real number &, the pulses

fo(t) = g'(t) + og(t)
£1(t) = g'(t) - og(t)

have the same energy density spectrum, Qf(m)'which is

0p(®) = (@® + 7) 0p(w),




where Og(w) is the energy density spectrum of g(t).

For fo(t) and f;(t) to be orthogonal we must also require that
00
d[[g'(t) - ag(t)let(t) + ag(t)] at =

QD
ﬁg'(t)le at - 012‘/‘[g(1;)]2 dt = O.
-00

-0

By Parseval's theorem

aQ
2 1 u
-o‘!ig(t)] at = = ]:D () aw = é_ﬁg

-0
and
u
jg'(t)]2 at = L I;e Og(®) do = =,
- en_ on
Then for orthogonality
q = 1-1—2 s
Yo

where Ug and u, are the zeroth order moment and the second order moment

of ®g(w). The two pulses

£o(t) = g'(t) + -2 g(t)
Yo

£(t) = g'(t) - -2 g(t)
Yo

are, therefore, orthogonal and have the same sutocorrelation function.
Here Q was determined by the moments of the given 0g(a>). We could,

however, choose an appropriaste & and thus plece a restraint on the moments
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if some Qg(w) to be constructed later. This is the approach that is adopted
in this report.

By taking into consideration the properties of sufficiently differ-
entiable pulses (time-limited or finite support) and making use of the method
of moments of the energy spectrum, the reports shows that it is possible to
construct a set of real pulses with three properties:

(a) the pulses have the same support,
(v) the pulses are mutually orthogonal over this support,
(¢) the pulses have the same autocorrelation function, or

equivalently, the same energy density spectrum.
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CHAPTER IV

ABSTRACT OF SCIENTIFIC REPORT NO. L4
ON LINEAR PRODUCT CODES AND THEIR DUALS

L. J. Weng

In thils report the value of studying the tensor product of linear
codes, the iterated codes and the error-locating codes, 1s demonstrated.
The pertinent problems concerning these product codes are outlined.

One of the important problems is to relate both the code space and
its null space of a tensor product code to the code spaces and mull spaces
of the component codes of the product code. An extensive study in this
area is given in the report. First a brute-force and tedious direct
approach is illustrated. A more meaningful algebralc approach is then
developed. The result can be expressed in various forms; each of them
gives a special interpretation. A better insight of the product code
structure is thus obtained. The determination of mull space of a tensor
product space involving the translation of fields is also treated. In
this case the elements of two original component codes and elements of
the resultant product code are expressed in different fields. The result
shows that this will give us more efficient error-locating codes. But
no advantage will be obtained by constructing iterated codes through
fields translation.

The problem of encoding and decoding of tensor product codes are
considered in detail. Decomposition of the procedure and implementation

of encoding and decoding of a product code into those of its component
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codes 1s emphasized. The general encoding and decoding schemes appllicable
to all product codes are first studied. Then special attention 1s given
to the product codes whose component codes are cyclic. Since the implemen-
tation of cyclic codes can be achieved easily by linear shift-registers
and the encoder can be converted to that of its dual code by varying the
input and output positions, the encoder of an iterated code or an error-
locating code can possess four operating modes by converting one, one, or
both of its component codes to their respectively dual codes.

Furthermore, the report shows that the encoding clrcult of an iterated
code and that of an error-locating code are very similar if theilr component
codes are the same. Therefore, it 1s possible to implement an eight mode
encoder -- 4 high-redundancy iterated codes and 4 low-redundancy codes.

The encoder can be converted to a syndrome calculator for any of the eight
product codes. A simple decoding scheme, namely permutation decoding,

which 1s capable of correcting a large fraction of all correctable errors

of a systematic cyclic code, is investigated. It is suggested that it be
used either as a part of the correction-detection scheme or in combination
with an auxillary scheme to attain full error correction capability. Finally,
the minimum distances of both iterated codes and error-locating codes, and

suitable commnication channels for employing such codes, are discussed.



CHAPTER V

SCIENTIFIC REPORT NO. 5

IMPLEMENTATION AND PERFORMANCE OF THE MAXIMUM-LIKELIHOOD
DETECTOR IN A CHANNEL WITH INTERSYMBOL INTERFERENCE

R. A. Gonsalves

High speed date commnication vie PAM requires the simultaneous control
of intersymbol interference (ISI) and random noise. In this report we give
an explicit structure for the maximum-likelihood (ML) receiver which
accomplishes this purpose. The receiver is optimum in the sense that it
minimizes the per-symbol probability of error, Pe. The non-linear structure
contains elements of the optimum linear receiver and the decision feedback
(or "tail cancellation") receiver.

We assume independent, binary (*1) data, a known signalling pulse
shape s(t) which lasts for two bauds (giving rise to limited ISI), stationary
additive, white (power spectral density = N,/2), Gaussian noise, and perfect
synchronism between transmitter and recelver. Several of these assumptions
can be removed by more complex analyses; perhaps the most bothersome, the
assumption of limited ISI, is removed here only by a heuristic argument.

The ML receiver processes as muich of the received data y(t) as is
available, producing & statistic My to decide on the polarity of the k%! bit,
Hie Mg is given by

Me = A + Z{Ay g + Z{Ag o + eeel}

+ Z{Apyy + Z{Ay o + ee0}) s (1)
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where Ay 1s a correlation statistic given by

Ay = -Ié‘- y(t) s(t-xT) at, (2)
(o]
= eX + eR
Z{x} = log, = (3)
and R = -I\ITL s(t) s(t+T) at. (L)
o

These equations are implemented in Fig. 1. The input-output characteristic
of the non-linear device defined by Equation (3) is shown in Fig. 2 for
several values of the ISI parameter R.

Fige 1 points up the similarity between the ML receiver and the
optimum linear receilver that is, a matched filter followed by a tapped
delay line. In this structure, however, the useful output is a non-linear
rather than a linear sum of the tap outputs.

Upper and lower bounds on Pe have been set and a sample curve is
presented showing P, versus SNR. This curve shows that the detector compares

favorably with several other detection schemes at all SNR.
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Fige 1 The ML Receiver

- output, Z{x}

Fig. 2 Non-Linear Characteristics of Z{x}
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CHAPTER VI

COMMUNICATION THEORY GROUP REPORT NO. 6
OPTIMUM INTERPOLATION OF SAMPIED FUNCTIONS

M. Schetzen

A study of optimum sampling and interpolation of random processes was
begun under this contract. The results of the first part of the initial
study, optimum linear interpolation, is presented in this report.

The problem derives its importance from the fact that many information
processing systems sample the data being processed. The desired function
mst then be reconstructed from the sampled data. Examples of such systems
used in commnications are pulse and delte modulators; digital systems also
require the data belng processed to be sampled. Often, the data is recon-
structed by means of a low-pass R-C filter; sometimes a zero- or first-
order hold circuit is used. The waveform reconstructed by these techniques
closely approximates the sampled function if the sampling rate is large
as compared with the bandwidth of the function being sampled and if the
sampled data is accurate so that it is not corrupted by very much noise.
For a given error criterion, it is clear that these interpolation proce-
dures are generally not optimum.

In the ideal case of a time function f(t) whose spectrum is zero for
w > 2xf , it is known that it can be reconstructed with zero error from

a set of equally spaced sampled data in which the sampling rate, fL., is
: 1



greater than 2f .. The interpolation is

QO

Sin 2nfy (t-nT
£(t) = 2195, Z £(nT,) m(t-o)
ns==to anfy, (t-nT; )

in which T; is the spacing between samples.

This interpolation formula is not physically realizable since the
interpolated value of f(t) depends upon the samples f£(nT) for nT > t.

By increasing the sampling rate so that it 1s greater than 6f, £(t) can
be interpolated in terms of only the samples £(nT) for nT < t.2 1In all
practical cases, however, a message is not completely determined by its
own past. If it were so determined, then at no peridd in the message
would it be possible to introduce new information. Thus bandlimited
functions are in a certain sense "singular".3 If a random function,
f(t), is not singular, then it cannot be interpolated with zero mean-
square error on the basis of its past samples, £(nT) for nT < t. The
problem of determining the optimum causal interpolation function and the
minimum obtainable error thus is significant.

For periodic sampling, explicit expressions of the optimum causal
linear interpolation filter for the interpolation of corrupted samples
are presented in the report. The criterion used was that the mean-square
error be a minimm. In addition, expressions for the minimum mean-square
error are obtained. These results, which are believed to be new, are
illustrated by some specific examples of practical importance. In order
to study the properties of the waveform that contribute to the error,
simple bounds of the irremovable error were obtalned. As an example, for

the important case in which the power density spectrum of the random process




is a strictly monotonically decreasing function of frequency, it is shown
that the irremovable mean-square error lies between one and two times the
Power in the random process above one-half the sampling frequency. This
bound implies that, in choosing a sampling frequency, it is the power in
the "talls" of the spectrum and not the amplitude of the spectrum that
should be considered.

The second part of this initial study, optimum pre-emphasis, is in
progress. In addition to optimum pre-emphasis systems, the minimm error
as a function of the average sampling rate for various efficient sampling

procedures will be studied.
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CHAPTER VII

COMMUNICATION THEORY GROUP REPORT NO. 7
A STUDY OF ADAPTIVE BANDWIDTH COMPRESSION®

L. Ehrman

The performence characteristics of four adaptive bandwidth compression
techniques - the floating-aperture predictor, the zero-order interpolator,
therfan interpolator and the maximum length interpolator - are found in
analytic form. It is shown that the mean and mean-square time between
output samples are, for a floating-aperture predictor with vector Markov
Process input signals, the solutions of two integral equations whose
kernels are the conditional probability density function of the input
process, while for a zero-order interpolator and a maximum length
interpolator they can be expressed as space-time integrals of the input
signal's range and adjusted range probability density function. The mean
and mean-square output times of the fan interpolator are expressed as the
sum of iterated integrals of the signal's conditional probability density
function over the aperture space.

The relation between peak error and RMS error is derived for each
compression algorithm. The transmission bandwidth required for each
algorithm is found for the case when the input signal is a first-order

Gauss-Markov process. This bandwidth is compared with that required for

*This report is based on a Ph.Ds thesis written under a National Science
Foundation Fellowship. The writer was affiliated with the Communication Theory
Group while preparing the thesis.
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uniformly sampled date which 1s reconstructed by means of the optimum time-

invariant linear interpolator filter. It 1s shown that the fan interpolator
requires approximately the same bandwldth as does the optimum filter, while

the floating-aperture predictor requires about 2.5 times the bandwidth. The
zero-order interpolator falls midway between the floating-aperture predictor
and the fan interpolator in performance. The maximum length interpolator is
superior only to the floatinge=aperture predictor; it is surmised that this

behavior is a characteristic of disjoint interpolators, in general.

8-




LIST OF PUBLICATIONS

Scientific Report No. 1, December 1964 (AFCRL-65-20)

"Pulse Shaping by Manipulating Transform Zeros", by J. B. Campbell,
S. He Chang, D. W. Fermental and N. T. Tsao-Wu.

Scientific Report No. 2, June 1965 (AFCRL-65-427)

"Properties and Applications of Autocorrelation-Invariant Functions",
by Robert A. Gonsalves, (based on a Ph.D. thesis).

Scientific Report No. 3, June 1965 (AFCRL-65-462)

"Orthogonal Signalling Pulses with the Same Autocorrelation", by
Denis W. Fermental, (based on a Ph.D. thesis).

Scientific Report No. 4, June 1966 (AFCRL-66-4T1)

"On Linear Product Codes and Their Duals", by Lih-Jyh Weng, (based
on a Ph.D. thesis).

Scientific Report No. 5, August 1966 (AFCRL-66-586)

"Implementation and Performance of the Maximum-Likelihood Detector
in a Channel with Intersymbol Interference", by Robert A. Gonsalves.

Communication Theory Group Report No. 6

"Optimum Interpolation of Sampled Functions", by Martin Schetzen.

Communication Theory Group Report No. T

"A Study of Adeptive Bandwidth Compression”, by Leonard Ehrman.
(A report based on & Ph.D. thesis written under a National Science
Foundation Fellowship. The writer was affiliated with the Communica-

tion Theory Group while preparing this thesis.)

Two Technical Pavers - presented at the 1965 International Convention of
IEEE, March 22-26, 1965, New York, New York.

"Brror-locating Codes", by S. H. Chang and L. J. Weng.

"Construction of Orthogonal Pulses with the Same
Autocorrelation", by D. W. Fermental.



A Technical Paper - presented at the Symposium on Models for Perception of
Speech and Visual Forms, sponsored by AFCRL, and held
at Boston, Massachusetts on November 11-1k, 196k.

"A Criterion for the Selection for Speech Features
in Speech Recognition Based on Comparison of
Experiments", by D. C. Lai.

A Technical Paper - presented at the Symposium on Signal Transmissions and
Processing, at Columbisa University, New York, New York,
May 13, 1965.

"Pulse Shaping by Manipulating Transform Zeros",
by Je Be Campbell, S. H. Chang, D. W. Fermental,
N. T. Tsao-Wue.

A Technical Paper - presented at the Flrst IEEE Annmual Communication Conven-
tion, at Boulder, Colorado on June 7-9, 1965.

"Laguerre Functions of the First Kind in Signal
Design and Representetion", by R. A. Gonsalves.

A Technical Paper - presented at the TEEE International Symposium on
Information Theory, at UCLA, Los Angeles, Californmis,
on January 31 - February 3, 1966.

"Dual Product Codes", by S. H. Chang and L. J. Weng.

A Technical Paper - presented at the IEEE International Communication Conference,
Philadelphia, Pennsylvania on July 15-17, 1966.

"A Note on Non-binary Orthogonal Codes", by S. H. Chang.

A Technical Correspondence - accepted for publication in the IEEE Transac-
tions of Professional Group on Information
Theory.

"Discussion on Arithmetic Codes with Large Distance",
by Se. He Cha.ng and N. T. Tsao-Wu.

Two Technical Papers - accepted for presentation at the forthcoming 1967
IEEE International Conference on Communication,
Minneapolis, Minnesota, June 12-1k%, 1967.

"Variable Redundancy Product Codes", by L. J. Weng
and G Hs Sollman.

"Maximum-Likelihood Receiver for Digltal Data
Trensmission", by R. A. Gonsalvese




A Master's Thesis, March 1965

"Pulse Shaping by Linear Networks", by Nelson T. Tsao-Wu.
A Master's Thesis, May 1966

"A Study of Shape Recognition Using the Medial Axis
Transformations", by Otis Philbrick.

A Master's Thesis, March 1967

"The Implementation and Application of a Product
Encoder with Variable Modes of Redundancy", by
George Sollman.

-85~




DISTRIBUTION LIST

Arizona State College
Post Office Box 942
Flagstaff, Arizona
ATTN: Prof. A. Adel

The Johns Hopkins University

Lab of Astrophysics & Phys. Meteor.
Baltimore, Maryland

ATTN: Dr. William S. Benedict

IDA

4OO Army-Navy Drive
Arlington, Virginia 22302
ATTN: Lucien M. Biberman

Meteorologisches Institut Der
Universitat Munchen

Amalienser. 52/111

8000 Munchen 13 Germany

ATTN: Dr. H. J. Bolle

Environmental Science Services Adm.
Boulder, Colorado 80302
ATTN: R. F. Calfee

APGC (PGVER)
Eglin Air Force Base, Florida 32542
ATTN: D. Cavitch

General Electric Company
Space Science Laboratory
Philadelphia, Pennsylvania
ATTN: Dr. K. L. Coulsen

Canadian Armament R & Destablishment
Post Office Box 1427

Valcartier, Quebec, Canada

ATTN: Dr. Cameron Cumming

Research Activities Bullding
North Campus

Ann Arbor, Michigan 48105
ATTN: S. Roland Drayson

EMI Electronics Ltd.
Infrared Research Department
Victoria Road

Falthem, Middlesex, England
ATTN: C. B. Farmer

AFCRL (CRO) Stop 30

L. G. Hanscom Field

Bedford, Massachusetts 01730
m: Dr. J. S. Garing

Harvard University
Pierce Hall

Oxford Street

Cambridge, Massachusetts
ATTN: Dr. Richard Goody

University of Florida
Department of Physics
Galnsville, Florida
ATTN: Dr. A. Green

NASA-Goddard Space Flight Center
Greenbelt, Maryland
ATTN: R. A. Hanel

CCA Corporation

Burlington Road

Bedford, Massachusetts 01730
ATTN: Dr. J. I. F. King

Technical Operations Research
South Avenue

Burlington, Massachusetts 01803
ATTN: Dr. Irving L. Kofsky

University of Colorado
Department of Astro-Geophysics
Boulder, Colorado 80302

ATTN: Prof. Julius London

General Dynamics/ Convair
Department 596-2

5001 Kerney Villa Road

San Diego, California 92112
ATTN: Dr. C. B. Ludwig

University of Liege
Institute of Astrophysics
Cointe-Sclessin, Belgium
ATTN: Prof. M. V. Migeotte



Denver University
Physics Department
Denver, Colorado 80210
ATTN: David G. Murcray

Lockheed Missile & Space Company
Sunnyvale, California
AT"TN: G. OPPEL

Smithsonian Institute
Astrophysical Observatory
60 Garden Street
Cambridge, Massachusetts
ATTN: Carl Sagan

The Johns Hopkins University

Lab of Astrophysics & Phys. Meteor.
Baltimore, Maryland

ATTN: Prof. John Strong

Southwestern At Memphis
Physics Department
Memphls, Tennessee

ATTN: Prof. J. H. Taylor

Environmental Science Services Adm.

National Environmental Satellite
Center - FOB #4

Washington, D. C. 20233

ATTN: Dr. David Q. Wark

Kansas State University
Manhattan, Kansas
ATTN: Dr. Dudley Williams

Tohoku University

Geophysical Inst. - Faculty of Science

Sandal, Japan
ATTN: Prof. Gilchi Yamemoto

Block Engineering, Inc.

19 Blackstone Street
Cambridge, Massachusetts 02139
ATTN: A. S. Zachor

Polytechnic Institute of Brooklyn
Graduate Center - Route 110
Farnindale, Long Island

New York 11735

ATTN: Dr. Ralph Zirkind

_87_

Hq., AFCRL, OAR (CRBK) Stop 30
L. G. Hanscom Field

Bedford, Massachusetts 01730
ATTN: Charles F. Hobbs

AFCRL (CRMXIR) Stop 29
L. G+ Hanscom Field
Bedford, Massachusetts OLl730

AFCRL (CRMXIR) Stop 29

L. G. Hanscom Field

Bedford, Massachusetts OL730
ATTN: Mrs. Cora Gibson

AFCRL (CRMXRA) Stop 39
L. G. Hanscom Field
Bedford, Massachusetts 01730

AFCRL (CRMXRD) Stop 30
L. G. Hanscom Field
Bedford, Massachusetts OL730

AFCRL (CRN) Stop 30
L. G. Hanscom Field
Bedford, Massachusetts 01730

AFCRL (CRTE) Stop 30
L. G. Hanscom Field
Bedford, Massachusetts 01730

AFCRL (CRTPM) Stop 30
L. G. Hanscom Field
Bedford, Massachusetts 01730

ADC :
Operations Analysis Office
Ent. Air Force Base
Colorado 80912

AFAL (AVX)
Wright-Patterson Air Force Base
Ohio 45433

AFETR

Technical Iibrary-Mu-135
Patrick Air Force Base
Florida 32925




AFIT (MCLI, Library)

Building 640 - Area B
Wright-Patterson Air Force Base
Ohio 45433

AFSC-STLO (RSTAL)
AT Unit Post Office
Los Angeles, California 90045

AFSC~-STLO (RTSAB)

Waltham Federal Center

424 Trapelo Road

Waltham, Massachusetts 02154

AFSC-STLO (RTSUM)
68 Albany Street
Cambridge, Massachusetts 02139

AFWL (WLIL)
Kirtland Air Force Base
New Mexico 87117

Dir., Air University ILibrary
Maxwell Air Force Base
Alabama 36112

ATTN: AUL3T

APGC (PGBPS-12)
Englin Air Force Base
Florida 32542

OAR (RRY)
1400 Wilson Boulevard
Arlington, Virginia 22209

RADC (EMTLD)

Griffiss Air Force Base
New York 13440

ATTN: Documents Library

RTD

Scientific Director
Bolling Air Force Base
Washington, D. C.

SAC (0A)
Offutt Air Force Base
Nebraska 68113

Systems Engineering Group (RTD)
Wright-Patterson Air Force Base
Ohio 45433

ATTN: SEPIR

SSD (SSTRT)

Los Angeles Air Force Station
AFUPO

Los Angeles, California 90045
ATTN: Lt. O'Brien

Hq., TAC (OA)
Langley Air Force Base
Virginia 23362

USAF Academy
Academy ILibrary (DFSLB)
Colorado 80840

Army Missle Command

Redstone Scientific Info. Center
Redstone Arsenal, Alabama 35809
ATTN: Chief, Document Section

U. S. Amy Electronics Command
Technical Document Center

Fort Monmouth, New Jersey 07703
ATTN: AMSEL~RD-MAT

Chief of Naval Operations
(oP -413-B21)
Washington, D. C.

Naval Ordnance Laboratory
Technical Library

White Oak, Silver Spring
Maryland 20910

Commanding Officer

Office of Naval Research Branch Off.
Box 39 - Fleet Post Office

New York 09510

Director

Naval Research Laboratory
Washington, D. C. 20390
ATTN: 2027

U. S. Naval Ordnance Test Station
China Lake,California 93555
ATTN: Technical Library

U. S. Naval Postgraduate School
Library (Code 212L)
Monterey, California 93940




U. S. Navy Electronics Laboratory (Iibrary)

San Diego, California 92152

Central Intelligence Agency
Washington, De C. 20505
ATTN: OCR/DD/STD. Distribution

Clearinghouse for Federal Scientific
& Technical Information (CFSTI)
Sills Building

5285 Port Royal Road

Springfield, Virginia 22151

Director

Defense Atomic Support Agency
Washington, D. C. 20301

ATTN: Technical Library Section

Defense Documentation Center (DDC)
Cameron Station
Alexandria, Virginia 22314

DIA
(DIAAP-1LD)
Washington, D. C., 20301

Environmental Sciences Services Adm.
Idibrary

Boulder ILaboratories

Boulder, Colorado 80302

FAA

Bureau of Research & Development
300 Independence Avenue, S.W.
Washington, D. C. 20553

Government Printing Office
Library

Division of Public Documents
Washington, D. C. 20402

Library of Congress
Aerospace Technical Division
Washington, D. C. 20540

Library of Congress
Exchange & Gift Division
Washington, D. C. 20540

U. S. Army Research Office
3045 Columbia Pike
Arlington, Virginia 2220k
ATTN: Technical ILibrary

-89-

NASA Scientific & Technical
Information Facility

Post Office Box 33

College Park, Maryland 207LO

ATTN: Acquisitions Branch (S-AK/DL)

NASA-Flight Research Center
Library

Post Office Box 273
Edwards, California 93523

NASA~Goddard Inst. for Space Studies
(Iibrary)

2880 Broadway

New York, New York 10025

NASA-Goddard Space Flight Center
Technical Iibrary
Greenbelt, Maryland 20771

NAS-Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California 91103
ATTN: Library (TDS)

NASA-Iewis Research Center
Library - Mail Stop 60-3
21000 Brookpark Road
Cleveland, Ohio

NASA-Manned Spacecraft Center
Technical Library
Houston, Texas 77058

National Center for Atmospheric

™ ™
AT DT GL W ILL

NCAR Iibrary, Acquisitions
Boulder, Colorado 80302

ODDR & E (Libary)

Room 3C-128

The Pentagon
Washington, D. C. 20301

ATAA-TIS Library
750 Third Avenue
New York, New York 100LT



Aerospace Corporation Chief, Canadian Defecnce

Post Office Box 95085 Research Staff
Los Angeles, California 90045 2450 Massachusetts Avenue, N.W.
ATTN: Idbrary Acquisitions Group Washington, D. C. 20008

(Technical & Scientific Reports will
Battelle Memorial Institute be released for military purposes
Library only and any proprietary rights
505 King Avenue which may be involved are protected
Columbus, Ohio 43201 by United States/United Kingdom &

Canadian Government Agreements. )
The Mitre Corporation

Post Office Box 208 National Research Council
Bedford, Massachusetts 01730 National Dcience Library
ATTN: Library Ottawa 7, Canada

The Rand Corporation General Iilectiric Company

1700 Main Street Military Comm. Department
Santa Monica, California 90LO6 LOOO Nortn West 39th Street
ATTN: Library-D Oklanuma City, Oklahoma 73102

ATTN: M. E. Mitchell
British Detfence Stafils
Britigh Embassy
Scientiflic Information Officer
3100 Massachiuselts Avenue, N.W.
Washington, D. C. 20008

Distribution List for NASA, KRC

ERC - Library
NASA, WRC
575 Tecimology Square

Cambridre, Massachuscotts Q2139

NASA, ERC

Systems Research Laboratory
Guidance and Control Branch
575 Technology Square
Cambridge, Massachusetts 02139
ATTN: Mr. Stephen J. O'Neil

NASA, ERC

Systems Research Laboratory
Guidance and Conlrol Branch
575 Technoloyy Square
Cambridge, Massachusetts 02139
ATTN: Mr. Jean Roy




Unclaggified
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report ia ¢lassified)

1. ORIGINATIN G ACTIVITY (Corporate author)

Department of Electrical Engineering,

Northea,stern University 28. REPORT SECURITY C LASSIFICATION

360 Huntington Avenue, Boston, Massachusetts 02115 |2 °"°UYP

Unclassified

3. REPORT TITLE

STATISTICAL COMMUNICATION THEORY

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Final Scientific Report, period covered 1 December 1963 thru 31 March 1967

st
5. AUTHOR(S) (Last name, firat name, initial)

Communication Theory Group

4. DOD Subelement - 674610

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFs
April 1967 90 40

Ba. CONTRACT OR GRANT NO. NASA Grant 9a. ORIGINATOR'S REPORT NUMBER(S)

AF19(628)-3312 NGR-22-011-013
b. PrRoJECT No. & Task No.

4610-03

- ¢ DOD Element 9b. g"r.nfs.';al:‘}PonT NO(S) (Any other numbers that may be assigned
62405304

AFCRL~6T=-0272

10. AVAILABILITY/LIMITATION NOTICES

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

11. SUPPLEMENTARY NOTES Partially supported
by the National Aeronautics and Space
Agency, Cambridge, Massachusetts

12. SPONSORING MILITARY ACTIVITY
Hq., AFCRL, OAR (CRB)

United States Air Force, L.G. Hanscom Field
Bedford, Masgsachusetts 01730

13. ABSTRACT

of analog signals.

This report describes four current research efforts: arithmetic codes,
non-binary orthogonel codes, error-correcting schemes, and filtering of
PAM signals for a randomly selected channel. Seven Scientific Reports are
summarized. The subject matter of these reports includes the following topics:
linear product codes, detection of digital data, optimum interpolation of
sampled functions, adaptive bandwidth compression, and the design and shaping

DD .2 1473

Unclassified
Security Classification




Unclasglfied

Security Classification

14.
KEY WORDS

LINK A
ROLE

LINK B
ROLE

LINK C
ROLE

Algebraic Codes

Arithmetic Codes
Non-binary Orthogonal Codes
Product Codes

Dual Codes

Error-Control

Random Channel

Signal Design

Adaptive Sampling

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
‘‘Restricted Data’’ is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200, 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifice-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

S. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initial.
If military, show rank snd branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATZ: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
shouid follow normal pagination procedures, i.e., enter the
number of pages containing information

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written,

8b, 8, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified

and controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) “‘’Qualified requesters may obtain copies of this
report from DDC.”’

(2) ‘*“‘Foreign announcement and dissemination of this
report by DDC is not authorized.”’

(3) *‘‘U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

”

(4) *‘‘U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

. ”

(5) “‘All distribution of this report is controlled. Qual-

ified DDC users shall request through

”n
»

If the report has been furnished tc the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11, SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS). (S). (C), or (U).

There is no limitation cn the length of the abstract. How-

ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment mode! designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional.

GPO 886-581

Unclassified
Security Classification




